

Preparation, properties, and reactions of metal-containing heterocycles XCIV ¹. Manganese-induced synthesis and crystal structure of 3,5-di(adamant-1-yl)-1-thia-2,4-diphosphole

Ekkehard Lindner *, Elke Bosch, Cäcilia Maichle-Mößmer, Ulrich Abram

Institut für Anorganische Chemie der Universität Tübingen, Auf der Morgenstelle 18, D-72076 Tübingen, Germany Received 23 January 1996

Abstract

3,5-Di(adamant-1-yl)-1-thia-2,4-diphosphole (2) has been formed by insertion of AdC=P into the > P-S bond of the (η^2 -thiophosphinito)manganese complex (OC)₄Mn(η^2 -S-PR₂) (1) (R = cyc-hex), followed by a [2 + 2] cycloaddition of the resulting intermediate (OC)₄MnPR₂-P=C(Ad)-S (A) with a second phosphaalkyne and elimination of the (OC)₄MnPR₂ fragment 3. The structure of 2 was determined by a single crystal X-ray diffraction analysis. Crystal data for 2: space group P_{2_1}/c with a = 14.324(2) Å, b = 11.900(1) Å, c = 11.800(1) Å, c = 10.31(1)°, c = 10

Keywords: Manganese; Phosphaalkyne; Crystal structure; Group 7; Metallacycle; Phosphine

1. Introduction

Investigations on the behavior of phosphaacetylenes in the coordination sphere of transition metal complexes led to the knowledge that late transition metals (M = Ni, Co, Rh, Fe) are capable of promoting the cyclodimerization to 1,3-diphosphacyclobutadienes [2]. In contrast to these results, early transition metals (M = V, Zr, Hf) favor a cyclotrimerization or cyclotetramerization of that heteroalkyne [3]. Because of the similar covalent radii and comparable electronegativities of phosphorus and sulfur, the > P - S group in thiaphosphametallacyclopropanes surprisingly also behaves like a heteroalkyne [4]. Starting from the three-membered heterocycles $[M]-PR_2 = S$ ([M] = Mn(CO)₄ [5], Co(CO)₂PPh₃ [6]) with BuC=P we recently obtained, in good yields, the 3,5-di(tert-butyl)-1-thia-2,4-diphosphole, provided that the substituent R at the phosphorus atom is sterically demanding [5,6]. To the best of our knowledge, only a few five-membered heterocycles of this type are mentioned in the literature. Some years ago the first thiadiphosphole with SiMe, and SSiMe, substituents was synthesized in good yields [7]. The occur-

2. Results and discussion

Treatment of the $(\eta^2$ -thiaphosphinito)manganese complex 1 with adamant-1-ylphosphaalkyne in tetrahydrofuran at 65°C afforded, in good yields, the 3,5-di(adamant-1-yl)-1-thia-2,4-diphosphole (2) (Scheme 1). After purification with the aid of medium pressure liquid chromatography (MPLC), a colorless, stable solid was obtained which is soluble in all common organic solvents. The composition of 2 was confirmed by a field desorption mass spectrum displaying the molecular peak. In the 31 P 1 H 1 NMR spectrum of 2 one observes two

rence of other derivatives of this heterocycle with Ph [8] and OSiMe₃ [9] substituents was also mentioned, but they are formed only in side reactions in very low yields. In this investigation we want to demonstrate that the metal-mediated synthesis of thiadiphospholes, starting with phosphaalkynes and thiophosphinito complexes, can be more generalized, even if the phosphaacetylene carries a steric encumbering residue. Herein we describe the behavior of (OC)₄Mn=S=PR₂ (R = cyc-hex) towards adamant-1-ylphosphaalkyne. In a smooth reaction 3,5-di(adamant-1-yl)-1-thia-2,4-diphosphole is accessible.

^{*} Corresponding author.

For Part XCIII, see Ref. [1].

$$(OC)_{a}Mn \overset{PR_{2}}{\underset{S}{=}} \underbrace{\begin{array}{c} R^{1}CmP \\ OC)_{a}Mn \\ S \\ \end{array}} \underbrace{\begin{array}{c} R_{2} \\ P \\ A \\ \end{array}}_{A}$$

$$\frac{R^{1}CmP}{[2 + 2]} \underbrace{\begin{array}{c} (OC)_{a}Mn \\ S \\ \end{array}}_{A} \underbrace{\begin{array}{c} R^{1} \\ P \\ \end{array}}_{-[(OC)_{a}MnPR_{2}]} \underbrace{\begin{array}{c} R^{1} \\ P \\ S \\ \end{array}}_{S} \underbrace{\begin{array}{c} R^{1} \\ S \\ \end{array}}_{R^{1}}$$

$$R = cyc\text{-Hex}$$

$$R^{1} = Adamant-1-yI$$

Scheme 1.

characteristic doublets in the low field part. The size of the ²J(PP) coupling indicates that there is no direct P-P interaction. Because of the electron withdrawing effect of sulfur, the low field signal is attributed to P2, the doublet at higher field is assigned to P4.

The ¹³C(¹H) NMR spectrum shows two significant low field doublets of doublets for the ring carbon atoms. Whereas the one with similar P-C coupling constants is ascribed to C3, the other with two different P-C coupling constants is attributed to C5.

To confirm the structure of the 1-thia-2,4-diphosphole 2 this heterocycle was characterized by an X-ray diffraction analysis. The ORTEP diagram with atom labeling is shown in Fig. 1. As expected, the five-membered ring is planar ($\Sigma = 539.99^{\circ}$), with all bond lengths being shorter than those of the corresponding single bonds (Table 1). The P2-C1 and P1-C2 interatomic distances have the dimension of a P=C double bond [10] and are shorter than the P1-C1 interaction, which is between a single and a double bond. The distance

Table 1
Selected interatomic distances (Å) and angles (°) for 2

Selected bond lengths (Å)			
P(1)-C(1)	1.760(2)		
P(1)-C(2)	1.715(2)		
P(2)-C(1)	1.706(2)		
P(2)-S	2.0650(7)		
S-C(2)	1.721(2)		
C(1)-C(11)	1.525(2)		
C(2)-C(21)	1.524(2)		
Selected bond angles (°)			
C(2)-S-P(2)	101.33(6)		
C(1)-P(2)-S	98.80(6)		
P(2)-C(1)-P(1)	120.55(10)		
C(2)-P(1)-C(1)	i00.09(9)		
P(1)-C(2)-S	119.22(10)		

between P2 and S is slightly shorter than that of a single bond [11], the same applies to S-C2. The bond angles of P1 and C1 are comparable with those mentioned in Ref. [12].

Scheme 1 demonstrates a possible course of the reaction for the formation of 2. In a first step the phosphaalkyne is inserted into the PuS bond of the starting compound 1 [13]. The resulting intermediate A with a P-P contact is kinetically unstable and undergoes a [2+2] cycloaddition with a further phosphaalkyne molecule to give the intermediate B. The latter decomposes with the elimination of the thiadiphosphole 2 [5,6]. The remaining metal complex fragment 3 obviously reacts with additional 1 to give the substitution product $(OC)_3(HPR_2)Mn(\eta^2-SuPR_2)(4)(R = cyc-hex)$ (traces of water) and a sparingly soluble complex containing $Mn(CO)_4$ units (IR spectrum) which was not characterized (Scheme 2) [5]. If a more bulky

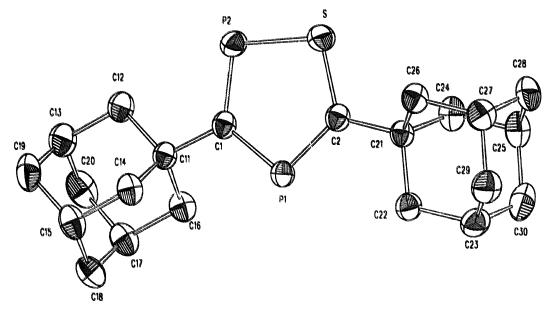


Fig. 1. ORTEP diagram of 2. The atom numbering is different from that in Scheme 1.

organometallic fragment like the (η⁵-C₅H₅)Ni moiety instead of an Mn(CO)₄ residue is employed, the reaction is finished with the corresponding nickel-containing five-membered ring A. The structure of this heterocycle was recently determined by X-ray structural analysis [13].

The orientation of the inserted phosphaalkyne is electronically and sterically controlled. In phosphaacetylenes the phosphorus atom carries a positive and the carbon atom a negative partial charge [14]. In η²-thiophosphinito metal complexes the sulfur and phosphorus atoms have a partially positive and negative charge respectively [4]. Starting from the intermediate **B**, a further [2+2] cycloaddition is not possible because of the steric demand of the substituent R at the phosphorus atom [5].

3. Experimental section

3.1. Materials

All manipulations were performed under argon using vacuum-line and standard Schlenk techniques. Solvents were dried and deoxygenated by refluxing over the appropriate reagents prior to use and stored under argon. The IR spectrum was measured on a Bruker IFS 48 instrument. The FD mass spectrum was recorded on a Finnigan MAT 711A spectrometer modified by AMD (8 kV, 60°C). Elemental analyses were performed with a Carlo Erba 1106 analyser; the S analysis was carried out according to Dirschel and Erne [15] and Schöniger [16] and analysed as described by Wagner [17]. The ³¹P(¹H) NMR spectra were obtained on a Bruker WP 80 (external standard (coaxial insert) 1% H₃PO₄ in acetone- d_6 for $T \le 273$ K) and a Bruker DRX 250 spectrometer operating at 32.39 and 101.25 MHz respectively; ¹H and ¹³C(¹H) NMR spectra were measured with a Bruker DRX 250 at 250.13 MHz. Chemical shifts were recorded relative to partially deuterated solvent peaks which are reported relative to TMS. MPLC was carried out with a Knauer HPLC pump 64, UV/VIS filter photometer and Merck Lobar ® Column B (310-25) LiChroprep[®] Si 60 (40-63).

The starting complex $(OC)_4Mn-S = PR_2$ (R = cychex) (1) [18] and AdC=P [19] were synthesized as previously described.

3.2. 3,5-Di(adamant-1-yl)-1-thia-2,4-diphosphole (2)

AdC=P (580 mg, 3.25 mmol) was added to a solution of 1 (520 mg, 1.31 mmol) in 50 ml of tetrahydrofu-

ran. The solution was stirred and refluxed for 6 h. After removing the solvent under vacuum the residue was redissolved in n-hexane (20 ml), the insoluble material was filtered off (P4) and the filtrate chromatographed by a short silica gel column. The main purification resulted from MPLC with a silica gel column (2. fraction). The solvent was removed and the residue dried under vacuum to yield 80 mg (31.4%) of 2; m.p. 192-195°C. Anal. Found: C, 67.53; H, 7.84; S, 8.24. $C_{22}H_{30}P_2S$ Calc.: C, 68.02; H, 7.78; S, 8.25%. IR (KBr): $\nu(P-S)$ 525 (w) cm⁻¹. ³¹P(¹H) NMR (101.25 MHz, CDCl₃, 298 K): δ 247.95 (d, ${}^2J(PP)$ 48.9 Hz, P4), 261.71 (d, ${}^2J(PP)$ 48.9 Hz, P2). 1H NMR (250.13 MHz, CDCl₃, 298 K): δ 1.75-2.19 (m, 30H, C₁₀H₁₅). ¹³C(¹H) NMR (250.13 MHz, CDCl₃, 298 K): δ 222.01 (dd, ¹J(PC) 69.0, ¹J(PC) 77.5 Hz, C3), 209.91 (dd, ¹J(PC) 65.5, ²J(PC) 4.3 Hz, C5), 44.02 (dd, ²J(PC) 5.7, $^{3}J(PC)$ 15.7 Hz, ipso-C of $C_{10}H_{15}$), 43.30 (dd, $^{2}J(PC)$ 17.1, ${}^{2}J(PC)$ 17.8 Hz, *ipso*-C of $C_{10}H_{15}$), 29.25–29.43 (m, $C_{10}H_{15}$), 36.33 (s, $C_{10}H_{15}$), 47.30–48.63 (m, $C_{10}H_{15}$). MS (FD) m/z 388.1 [M⁺].

3.3. Tricarbonyldicyclohexylphosphine $(\eta^2$ -dicyclohexylthiophosphinito)manganese (4)

AdC≡P (580 mg, 3.25 mmol) was added to a solution of 1 (520 mg, 1.31 mmol) in 50 ml of tetrahydrofuran. The solution was stirred and refluxed for 6 h. After removing the solvent under vacuum the residue was redissolved in ethyl acetate/petrol ether (60/90°C)

Table 2 Crystal data and collection parameters for 2

Formula	C ₂₂ H ₃₀ P ₂ S
FW	388.46
Crystal size (mm ³)	$0.20 \times 0.20 \times 0.20$
Crystal system	monoclinic
Space group	$P2_1/c$
a (Å)	14.324(2)
<i>h</i> (Å)	11.900(1)
c (Å)	11.800(1)
β(°)	100.31(1)
$V(\mathring{A}^3)$	1978.9(4)
Z	4
Calc. density (mg m ⁻³)	1.304
h, k, l range	$\pm 16, -13 \rightarrow 0, -1 \rightarrow 13$
T(K)	208(2)
F(000)	832
Wavelength (Cu Kα)(Å)	1.54184
Reflections collected	3881
Independent reflections	3357
Reflections observed $[I > 2\sigma(I)]$	3149
No. of parameters	347
Goodness of fit	1.076
R ₁ a b	0.0367
wR ₂ ^b	0.0998

 $[{]a \atop k} R_1 = \sum ||F_0| - |F_c|| / \sum |F_0|.$ ${b \atop k} WR_2 = \{\sum [w(F_0^2 - F_c^2)^2]\} / \{\sum [w(F_0^2)^2]\}^{0.5}.$

Table 3 Atomic coordinates ($\times 10^4$) and equivalent isotropic displacement parameters ($\mathring{A}^2 \times 10^3$) for 2

Atom	x	у	Z	$U_{\rm eq}$
P(1)	2365(1)	4397(1)	-61(1)	32(1)
P(2)	3048(1)	6661(1)	-710(1)	39(1)
S	2251(1)	6795(1)	579(1)	41(1)
C(1)	2996(1)	5238(2)	-893(1)	30(1)
C(2)	1977(1)	5410(2)	779(1)	31(1)
C(11)	3512(1)	4669(2)	- 1762(1)	30(1)
C(12)	4092(2)	5510(2)	- 2346(2)	40(1)
C(13)	4617(2)	4903(2)	-3195(2)	48(1)
C(14)	2797(1)	4081(2)	-2711(2)	35(1)
C(15)	3321(1)	3480(2)	- 3560(2)	40(1)
C(16)	4198(1)	3769(2)	-1142(2)	34(1)
C(17)	4722(1)	3174(2)	-2000(2)	39(1)
C(18)	3994(1)	2603(2)	- 2921(2)	42(1)
C(19)	3896(2)	4330(2)	-4125(2)	49(1)
C(20)	5292(1)	4029(2)	-2550(2)	48(1)
C(21)	1432(1)	5147(2)	1745(1)	29(1)
C(22)	1220(1)	3879(2)	1788(2)	35(1)
C(23)	692(2)	3621(2)	2789(2)	42(1)
C(24)	2030(1)	5496(2)	2908(2)	39(1)
C(25)	1495(2)	5239(2)	3899(2)	45(1)
C(26)	481(1)	5788(2)	1578(2)	34(1)
C(27)	-50(1)	5517(2)	2571(2)	39(1)
C(28)	561(2)	5888(2)	3699(2)	46(1)
C(29)	- 244(1)	4260(2)	2594(2)	44(1)
C(30)	1309(2)	3981(2)	3917(2)	50(1)

 U_{eq} is defined as one third of the trace of the orthogonalized U_{ij} tensor.

(1:3) (20 ml), the insoluble material was filtered off (P4) and the filtrate was chromatographed by short silica gel column. The main purification resulted from MPLC with ethyl acetate/petrol ether (60/90°C) (1:3) by a silica gel column (3. fraction). IR (n-hexane): $\nu(C=0)$ 2015 (m), 1925 (vs), 1907 (s) cm⁻¹. 31 P{ 1 H} NMR (32.39 MHz, THF, 243 K): δ 53.15 (s, HP(C $_{6}$ H $_{11}$) $_{2}$), 95.25 (s, P(C $_{6}$ H $_{11}$) $_{2}$ =S). MS (FD)m/z 566.3 [M $^{+}$].

3.4. Structure determination of 2

Crystal data and details of data collection are summarized in Table 2. The atomic coordinates and equivalent isotropic displacement parameters for 2 are given in Table 3. Single crystals were obtained by adding a few drops of n-hexane to a concentrated THF solution of 2. The crystal was mounted on a glass fiber and transferred to an Enraf Nonius CAD4 diffractometer (graphite-monochromated Cu $K\alpha$ radiation).

The lattice constants were determined with 25 precisely centered high-angle reflections and refined by full-matrix least-squares methods. The data collected with Ω -scans at -65° between $\theta = 5.3$ and 65 resulted in 3881 intensity values. 3149 reflections with I >

 $2\sigma(I)$ have been used for the structure determination. The structure was solved by direct methods [20] and refined by full-matrix least-squares [21]. Refinement of the model with anisotropic temperature parameters and the hydrogen atoms calculated on ideal positions led to the final R value of 0.036.

4. Supplementary material available

Further details of the crystal structure investigation are available on request from the Fachinformationszentrum Karlsruhe, Gesellschaft für wissenschaftlich-technische Information mbH, D-76344 Eggenstein-Leopoldshafen, on quoting the depository number CSD 404700, the names of the authors and the journal citation.

References

- [1] E. Lindner, M.W. Pitsch, R. Fawzi and M. Steimann, Chem. Ber., 129 (1996) 639.
- [2] M. Regitz, in D. Enders, H.-J. Gais and W Keim (eds.), Organic Synthesis via Organometallics, Vieweg, Braunschweig, 1993, p. 93.
- [3] P. Binger, S. Leininger, J. Stanneck, B. Gabor, R. Mynott, J. Bruckmann and C. Krüger, Angew. Chem., Int. Ed. Engl., 34 (1995) 2227.
- [4] E. Lindner, Adv. Heterocycl. Chem., 39 (1986) 237.
- [5] E. Lindner, C. Haase, H.A. Mayer, M. Kemmler, R. Fawzi and M. Steimann, Angew. Chem., Int. Ed. Engl., 32 (1993) 1424.
- [6] E. Lindner, T. Schlenker and C. Haase, J. Organomet. Chem., 464 (1989) C31.
- [7] R. Appel and R. Moors, Angew. Chem., Int. Ed. Engl., 28 (1986) 567.
- [8] G. Märki and W. Hölzl, Tetrahedron Lett., 29 (1988) 4535.
- [9] K. Karaghiosoff and A. Schmidtpeter, *Phosphorus Sulfur*, 36 (1988) 217.
- [10] R. Appel, Angew. Chem., Int. Ed. Engl., 20 (1981) 731.
- [11] (a) H.P.M.M. Ambrosius, J.H. Noordik and G.J.A. Ariaans, J. Chem. Soc., Chem. Commun., (1980) 832; (b) H. Alper, F.W.B. Einstein, F.W. Hartstock and R.H. Jones, Organometallics, 6 (1987) 829.
- [12] P. Binger, B. Biedenbach, R. Mynott, C. Krüger, P. Betz and M. Regitz, Angew. Chem., Int. Ed. Engl., 27 (1988) 1157.
- [13] E. Lindner, A. Nothdurft, R. Fawzi and C. Maichle, J. Organomet. Chem., 435 (1992) 213.
- [14] M. Regitz, Chem. Rev., 90 (1990) 191.
- [15] A. Dirschel and F. Erne, Mikrochim. Acta, (1961) 866.
- [16] (a) W. Schöniger, Mikrochim. Acta, (1955) 123; (b) W. Schöniger, Mikrochim. Acta, (1956) 839.
- [17] H. Wagner, Mikrochim. Acta, (1957) 19.
- [18] E. Lindner and V. Käss, Chem. Ber., 122 (1989) 2269.
- [19] T. Allspach, M. Regitz, G. Becker and W. Becker, Synthesis, 1 (1986) 31
- [20] G.M. Sheldrick, SHEANS86 Program for crystal structure determination, University of Göttingen, 1986.
- [21] G.M. Sheldrick, SHELXL93, Program for crystal structure refinement, University of Göttingen, 1993.